000 02273cam a22004214a 4500
001 ocm00001295
005 20240430143929.0
007 ta
008 050915s2001 caua b 001 0 eng
010 _a 2001001295
020 _a0761916725 :
_c14.95
040 _aDLC
_cDLC
_dDLC
042 _apcc
050 0 0 _aQA276
_b.A55 2002
069 _a03407590
090 _aQA 276 .A55 2002
090 _aQA 276 .A55 2002
100 1 _aAllison, Paul David.
_971682
245 1 0 _aMissing data /
_cPaul D. Allison.
260 _aThousand Oaks, Calif. :
_bSage Publications,
_cc2002.
300 _avi, 93 p. :
_bill. ;
_c22 cm.
490 1 _aSage university papers. Quantitative applications in the social sciences ;
_vno. 07-136
500 _a"A SAGE university paper"--Cover.
504 _aIncludes bibliographical references (p. 89-91) and index.
520 0 _aSooner or later anyone who does statistical analysis runs into problems with missing data in which information for some variables is missing for some cases. Why is this a problem? Because most statistical methods presume that every case has information on all the variables to be included in the analysis. Using numerous examples and practical tips, this book offers a nontechnical explanation of the standard methods for missing data (such as listwise or casewise deletion) as well as two newer (and, better) methods, maximum likelihood and multiple imputation. Anyone who has been relying on ad-hoc methods that are statistically inefficient or biased will find this book a welcome and accessible solution to their problems with handling missing data.
520 8 0 _a 
520 8 0 _a 
650 0 _aMathematical statistics.
_971683
650 0 _aMissing observations (Statistics)
_971684
830 0 _aSage university papers series.
_pQuantitative applications in the social sciences ;
_vno. 07-136.
_971685
852 _9p14.95
_y09-14-2002
907 _a12760
_b08-06-10
_c08-06-10
942 _cBOOK
_00
998 _aaudmc
_b09-14-02
_cm
_da
_e-
_feng
_gcau
_h0
935 _aPO10329-GEN3
945 _g0
_i631770
_j0
_laudmc
_nCopy Type:01 - Books
_o-
_p54.94
_q-
_r-
_s-
_t1
_u0
_v0
_w0
_x0
_yi10181477
_z08-06-10
999 _c12760
_d12760